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Abstract

In this short note we will consider a problem concerning the interconnection of systems
from the behavioral point of view. The specific class of systems under consideration
will be smooth time-invariant delay-differential systems with commensurate delays. We
will give a characterization for the achievability of a given subsystem via regular inter-
connection from the overall system. This also leads to a criterion as to which systems
can be achieved via regular interconnection followed by an elimination of the (then)
latent variables. The criteria can be checked directly by some matrix computations.

1 Introduction

In the behavioral approach a system (more precisely, its behavior) is given as the set of all

its trajectories, see [5]. In this note we will restrict to linear systems which are described by

a finite set of equations. To be precise, let L ⊆ CRn
be a C-vector space of functions and

let H ⊆ EndC(L) be a ring of linear operators acting on L. Then, for us a system with q

variables is a space

B := kerLR := {w ∈ Lq | Rw = 0} (1.1)

where R ∈ Hp×q for some p ∈ N is an operator matrix, called a kernel representation of

the behavior B. The q coordinates of w are called the external variables of the system.

They comprise the inputs and outputs of the system (for the behavioral definition of these

notions see [5]). The quite general definition (1.1) covers for instance the following classes

of (time-invariant) systems:

(a) linear systems described by ODEs, where H = R[ d
dt

] is the ring of linear ordinary differ-

ential operators acting on, say, L = C∞(R, C),

(b) linear multidimensional systems described by partial differential equations, where the

ring H = R[∂1, . . . , ∂n] acts on, say, C∞(Rn, C),
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(c) linear systems described by delay-differential equations, which will be specified in Sec-

tion 3.

In the general situation above, the space L carries the structure of a left H-module. Develop-

ing a behavioral theory for a certain class of systems (like (a), (b), or (c)) highly depends on

the ring structure (resp. module structure) of H (resp. L). While for instance the behavioral

theory of multidimensional systems can make use of the powerful machine of commutative

algebra [4, 8], this is not the case for delay-differential systems due to a different ring- or

module structure (it depends on the setting which one is responsible). The differences have

been pointed out in [3].

In the next section we will describe the notion of (regular) interconnection for general systems

of the type (1.1). Interconnection usually leads to so-called latent variables in the new system,

which one wants to eliminate from the systems description. We will illustrate this by an

example. This consideration raises the question as to which systems can be obtained by

interconnection and elimination from a given system. Finally, in the last section we will

introduce a class of systems described by delay-differential equations and investigate the

question posed above for these systems.

2 Interconnection of Systems

One of the most important concepts of control theory is that of feedback control. The

first step towards this direction is that of interconnecting two systems, the plant and the

controller. This comes very naturally in the behavioral setting as it can be expressed without

resorting to the notions of inputs and outputs. The following definition is taken from [7,

p. 332], where it has been introduced for linear time-invariant systems described by ODEs.

Definition 2.1

Let L ⊆ CRn
be a C-vector space of functions and let H ⊆ EndC(L) be a commutative ring

of linear operators on L.

Given two systems B1, B2 ⊆ Lq. The interconnection of these systems is defined as the

system B1 ∩ B2, that is, it consists of all trajectories which satisfy both sets of dynamical

equations. In particular, the interconnection of two systems B1 = kerLR1 and B2 = kerLR2

having kernel representations Ri ∈ Hpi×q is given by B1∩B2 = kerL

[
R1

R2

]
. The interconnection

is called regular if rk
[
R1

R2

]
= rk R1 + rk R2.

For systems B0, B1 ⊆ Lq we say that B0 is achievable via regular interconnection from B1 if

there exists a system B2 such that B0 = B1 ∩ B2 and this interconnection is regular.
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The notion of a regular interconnection is based on the following consideration. For many

system classes, in particular the three classes (a)–(c) described above, the rank of a kernel

representation is an invariant of the system. Furthermore, the number q of external variables

reduced by the rank of a kernel representation represents the number of input variables of

the system, where an input variable is an external variable which can be set freely (see

[5]). If we think of the interconnecting system as a controller, it should be clear that each

linear independent equation of the controller should put a restriction onto one input channel,

otherwise the controller would be inefficient. This leads exactly to the rank condition above.

We illustrate this notion by an example of linear systems described by ODEs.

Example 2.2

Let L = C∞(R, C) and R[ d
dt

] acting on L. Given two systems

Bi =
{(

ui

yi

)
∈ Lp+m

∣∣∣Piui + Qiyi = 0
}

,

where q = p + m and [P1, Q1] ∈ R[ d
dt

]p×(m+p) and [P2, Q2] ∈ R[ d
dt

]m×(p+m). If det Q1 6=
0 6= det Q2, the two systems are input/output systems in the sense of [5, Def. 3.3.1] with

input ui and output yi, see [5, Cor. 3.3.14]. The classical feedback-interconnection given by

u := u1 − y2, y1 = u2 =: y is described by the system

kerL

I 0 −I I

0 Q1 P1 0

0 P2 0 Q2

 (2.1)

for the variables (u, y, u1, y2). It can be regarded as the interconnection of two suitably

defined systems.

From the very definition it is obvious that the interconnection of two systems each having q

variables still has q external variables. It is simply a subsystem of either of its components.

But this means that, as in the example above, even the connected variables are still con-

tained in the systems description, see (2.1). Usually one wants eliminate these connected

variable (the so-called latent variables) from the systems description in order to get a kernel

representation for the new system in terms of the relevant variables (the so-called manifest

variables). For the example above this can easily be achieved as follows.

Example 2.3

Consider the system (2.1) in the situation of Example 2.2. If one is interested in the new

external variables u and y only, one has to eliminate the latent variables u1 and y2 by taking

the projection

B :=

[
I 0 0 0

0 I 0 0

](
kerL

I 0 −I I

0 Q1 P1 0

0 P2 0 Q2

).
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One can show that B = kerL[U4P1, U3P2 + U4Q1] where U :=
[
U1 U2

U3 U4

]
∈ Glm+p(R[ d

dt
]) is

such that U
[
Q2

P1

]
=
[
D

0

]
for some full row rank matrix D ∈ R[ d

dt
]m×m, which certainly exists

since R[ d
dt

] is a principal ideal ring. Moreover, it can easily be seen that the behavior B is

an input/output-system with output y if and only if det(I + Q−1
1 P1Q

−1
2 P2) 6= 0, see again

[5, Def. 3.3.1, Cor. 3.3.14]. This is the familiar well-posedness condition for this type of

feedback-configuration in the classical transfer function approach.

The discussion above raises the following questions:

(Q1) Which subsystems of a given system can be achieved via regular interconnection?

(Q2) Which systems can be achieved from a given system via regular interconnection followed

by a projection onto the desired variables?

In the next section we will attack these questions for systems described by delay-differential

equations. The characterization for the systems in (Q2) will be new.

3 Interconnection and Elimination for Delay-Differen-

tial Systems

In this section we introduce a certain class of delay-differential systems with commensurate

delays. This class will also comprise linear systems described by ODEs. Finally, we will

discuss the questions (Q1) and (Q2) raised above. We will give algebraic characterizations

of the systems under investigation.

For the rest of this paper we will fix the function space for the external variables as L :=

C∞(R, C). Let D := d
dt

be the differentiation on L and let σ denote the forward shift of unit

length, i. e.
(
σf
)
(t) = f(t− 1) for f ∈ L and t ∈ R. Then the ring

R[D, σ] =
{ L∑

j=0

N∑
i=0

pijD
iσj
∣∣∣L, N ∈ N0, pij ∈ R

}
⊆ EndC(L)

consists of all linear delay-differential operators with constant coefficients and delays of

integral length. If R ∈ R[D, σ]p×q is an operator matrix, then B := kerLR = {w ∈ Lq |
Rw = 0} is a so-called delay-differential system. In [3] (see also [2]) it has been shown

that the action of R[D, σ] on L is not sufficient in order to allow for a behavioral theory

of delay-differential systems. Instead one has to involve more general operators. As to this

goal, recall the abstract field of fractions

R(D, σ) =
{p

q

∣∣∣ p, q ∈ R[D, σ], q 6= 0
}
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of the ring R[D, σ]. One should have in mind that its elements have no meaning as operators

on L. However, as we will see in Theorem 3.2, a suitably defined subring H of R(D, σ) will

have an interpretation as operator algebra on L. For the rest of this paper the notation H
will be fixed as follows.

Definition 3.1

(a) For p =
∑

j,i pijD
iσj ∈ R[D, σ] define the entire function p∗ : C → C given by p∗(s) :=

p(s, e−s) =
∑

j,i pijs
ie−js for all s ∈ C. We call p∗ an exponential polynomial.

(b) Define the ring H :=
{

p
q
∈ R(D, σ)

∣∣∣ p, q ∈ R[D, σ], q 6= 0, p∗

q∗
is an entire function

}
.

The following results have been shown in [3, Ch. 3].

Theorem 3.2

(1) Each element p
q
∈ H defines an operator

p

q
: L −→ L, w 7−→ p(D, σ)v, where q(D, σ)v = w

and this interpretation yields an embedding of rings H ↪→ EndC(L).

(2) H is an elementary divisor domain, hence every matrix R ∈ Hp×q can be brought via left-

multiplication (resp. left-right-multiplication) by unimodular matrices into row echelon

form (resp. diagonal form).

A few comments are in order. The function p∗ associated with the operator p(D, σ) is just

the characteristic function, hence each zero λ ∈ C of p∗ with multiplicity k ∈ N corresponds

to the exponential monomials tjeλt, j = 0, . . . , k−1, in the solution space kerLp(D, σ). Using

some facts about the zeros of polynomials in two variables and of exponential polynomials,

this yields kerLq(D, σ) ⊆ kerLp(D, σ) whenever p∗

q∗
is an entire function. Together with

the surjectivity of the delay-differential operator q(D, σ) [1, p. 697] this leads to the well-

definedness of the operator in (1). Part (2) is the result of a thorough algebraic investigation

of the ring H. The diagonal form can even be managed as a Smith-form, that is, each

diagonal element divides the next one. Therefore, matrices over H behave basically like

matrices with entries in a Euclidean domain like for instance R[D]. In particular, matrices

with the same number of columns admit a greatest common right divisor and a least common

left multiple, both unique up to left unimodular factors. This strong algebraic structure of H
has the consequence that a behavioral theory for delay-differential systems of the form

B := kerLR where R ∈ Hp×q (3.1)

develops almost parallel to that of linear time-invariant systems described by ODEs as it can

be found in the book [5]. For instance, the elimination of latent variables in Example 2.3

work exactly the same way as for systems of ODEs.
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It should be noted that an analogous operator algebra can be introduced for systems with

noncommensurate delays. However, in that case Theorem 3.2(2) is not true anymore; as

a consequence the behavioral theory is much harder than for commensurate delays, see for

instance [6].

From now on a delay-differential system or behavior will be understood as a system (3.1).

As a consequence of the theorem above one has [3, Thm. 4.1.5]

kerLR1 ⊆ kerLR2 ⇐⇒ ∃ M ∈ Hp2×p1 : MR1 = R2 (3.2)

for operator matrices Ri ∈ Hpi×q, i = 1, 2, and in particular, if rk Ri = pi, i = 1, 2, then

kerLR1 = kerLR2 ⇐⇒ p1 = p2 and there exists U ∈ Glp1(H) : UR1 = R2. (3.3)

Let us present an example of a typical operator in H.

Example 3.3

Let q = (σ − e−λ)(D − λ)−1 ∈ R(D, σ). Then q ∈ H and we wish to calculate the image

qw ∈ L for w ∈ L. In order to do so take v(t) =
∫ t

0
eλ(t−x)w(x)dx as a solution of (D−λ)v =

v̇ − λv = w. Then by Theorem 3.2(1) the image qw ∈ L is given by

qw(t) = (σv − e−λv)(t) = −
∫ 1

0

eλ(x−1)w(t− x)dx.

Thus q is a distributed delay operator. The example is typical in the sense that all operators

in H can be written as a linear combination of point delay-differential operators in R[D, σ]

and distributed delays similar to the one given above.

Now we are in a position to discuss the questions (Q1) and (Q2) of Section 2. First of all

notice that by Theorem 3.2(2) and Equations (3.2) and (3.3) we can always assume that a

kernel representation has full row rank and, furthermore, is unique up to left-multiplication

by unimodular matrices.

Let us begin with (Q1). The following characterization can be found in [3, Thm. 4.4.4].

Theorem 3.4

Let Ri ∈ Hpi×q, i = 0, 1 be full row rank matrices and such that kerLR0 ⊆ kerLR1. Then

the following conditions are equivalent:

(1) kerLR0 can be achieved via regular interconnection from kerLR1,

(2) R0(kerLR1) ⊆ Lp0 is a controllable system in the behavioral sense of [5, Def. 5.2.2].

Notice that (2) gives an intrinsic characterization of achievability via regular interconnection;

it is purely in terms of the trajectories and does not resort to any kind of systems represen-

tation. One should also observe that the set arising in (2) above is always a behavior in the
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sense of (3.1). More generally, it has been established in [3, Thm. 4.4.1] that for all full row

rank operators R ∈ Hp×q, R̂ ∈ Hp̂×q one has

R(kerLR̂) = kerLX ⇐⇒ XR = lclm (R, R̂), (3.4)

hence the existence of least common left multiples guarantees the existence of some kernel

representation X ∈ Ht×p for the space R(kerLR̂).

Using this result we can formulate an answer to question (Q2). In the following theorem the

system kerLR1 plays the role of the given system, the operator Y that of the projection and

the system kerLZ is the desired system. Hence part (a) describes kerLZ as the projection

of a subsystem of kerLR1, which in turn can be achieved via regular interconnection. Note

also the special case s = q and Y = Iq which leads to Theorem 3.4 again.

Theorem 3.5

Let R1 ∈ Hr1×q with rk R1 = r1, Y ∈ Hs×q a unimodular row (that is, s ≤ q and Y can

be row extended to a matrix in Glq(H)), and Z ∈ Hp×s with rk Z = p. Furthermore, let

X ∈ Hm×p such that ZY (kerLR1) = kerLX (see (3.4)). Then the following are equivalent:

(a) there exists a matrix R0 ∈ Ht×q satisfying

(i) rk R0 = t,

(ii)kerLZ = Y (kerLR0),

(iii)the system kerLR0 can be achieved via regular interconnection from kerLR1.

(b) the system kerLZ can be achieved via regular interconnection from Y (kerLR1).

(c) kerLZ ⊆ Y (kerLR1) and ZY (kerLR1) ⊆ Lp is a controllable behavior.

(d) kerLZ ⊆ Y (kerLR1) and X is a unimodular row.

We wish to mention that the matrix X as well as a kernel representation for the behavior

Y (kerLR1) can be computed constructively from the data Z, Y , and R1. Hence the inclusion

in part (d) can easily be checked via (3.2), showing that (d) yields a practical criterion.

Observe also that (c) provides an intrinsic characterization purely in terms of the trajectories

of the systems involved.

Sketch of the Proof: The equivalence (b) ⇔ (c) follows directly from Theorem 3.4,

while (c) ⇔ (d) is a well-known criterion for controllability [3, Thm. 4.3.8]. As for the

equivalence (a) ⇔ (b) we first notice that there exist full row rank matrices A ∈ Ha×s and

M ∈ Ha×r1 such that

AY = MR1 = lclm (Y,R1).

This yields kerLA = Y (kerLR1), see (3.4). Furthermore the matrix [A, M ] is a unimodular

row, see [3, Thm. 3.2.8].

(a) ⇒ (b): The assumptions together with (3.4) imply the existence of a matrix R̂1 ∈ Hl×q
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such that rk [R1
T, R̂1

T]T = r1 + l and

ZY = C
[
R1

R̂1

]
= lclm

(
Y,
[
R1

R̂1

])
for some C ∈ Hp×(r1+l). Since AY = [M, 0]

[
R1

R̂1

]
is also a common left multiple, we get

A = V Z, [M, 0] = V C for some matrix V ∈ Ha×p, which has to be a unimodular row, because

[A, M ] has this property. Hence V can be completed to a unimodular matrix
[
V

V̂

]
∈ Glp(H).

Now Â := V̂ Z ∈ H(p−a)×s satisfies

kerLZ = kerL

[
A

Â

]
, (3.5)

and this establishes (b).

(b) ⇒ (a): Let Â ∈ H(p−a)×s be such that (3.5) is satisfied. Then one can show that

R0 :=
[

R1

ÂY

]
establishes (a). 2
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