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Abstract

A new class of of rate 1/2 convolutional codes called strongly MDS convolutional
codes are introduced and studied. These are codes having optimal column distances.
Properties of these codes are given and a concrete construction is provided. This
construction has the ability to correct δ errors in any sliding window of length 4δ + 2
whereas the best known MDS block code with parameters [n, n/2], n = 4δ + 2, can
correct δ errors in any slotted window of length 4δ + 2. A decoding algorithm for
these codes is given in the end of the paper.

1 Introduction

In comparison to the literature on linear block codes there exist only relatively few algebraic

constructions of convolutional codes which come with an algebraic decoding algorithm.

Convolutional codes are typically decoded by the Viterbi decoding algorithm which has

the advantage that soft information can be processed. The algorithm has however the dis-

advantage that it is too complex for codes with large degree (or memory). The algorithm is

also not practical for convolutional codes defined over large alphabets. In applications where

1The results of this paper were also presented at the 2002 IEEE International Symposium on Information
Theory in Lausanne, Switzerland, June 30–July 5, 2002
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codes over large alphabets are required the code of choice are linear block codes with large

distance such as Reed-Solomon codes.

In this paper we introduce a new class of rate 1/2 codes which we call strongly MDS

convolutional codes. The concept of MDS convolutional codes was introduced by the authors

in [2, 4, 3]. An [n, k, δ] convolutional code is called MDS if its free distance is maximal among

all rate k/n convolutional codes of degree δ.

Strongly MDS codes are a subclass of MDS codes which have a remarkable decoding

capability. We show in this paper that a [2, 1, δ] strongly MDS code (rate 1/2, degree δ) can

correct up to δ errors in any sliding window of 4δ + 2 code symbols. This compares to an

MDS block code with parameters [n, n/2], n = 4δ + 2, which corrects up to δ errors in any

slotted window (block) of length 4δ + 2. An algebraic decoding algorithm for strongly MDS

codes is outlined in the end of the paper.

2 Rate 1/2 strongly MDS convolutional codes

Let C be a 1/2 rate convolutional code over a field F, generated by G(D) =
[
a(D) b(D)

]
,

with a(D) = a0 + . . . + aδD
δ, b(D) = b0 + . . . + bδD

δ. We suppose a0 6= 0 or b0 6= 0 and

a(D), b(D) are coprime.

A parity check matrix for C is given by H(D) =
[
−b(D) a(D)

]
. We expand the matrices

G(D) and H(D) into G(D) = G0 + . . . + GδD
δ and H(D) = H0 + . . . + HδD

δ, Gj, Hj ∈
F

1×2, j = 0, . . . , δ.

Let:

Gc
j =


G0 G1 . . . Gj

G0 . . . Gj−1

. . .
...

G0

 , Hc
j =


H0

H1 H0

...
...

. . .

Hj Hj−1 . . . H0

 , (2.1)

the (j + 1)× 2(j + 1) truncatted matrices. Let

dcj = min
u0 6=0

wt
(
(u0, . . . , uj) ·Gc

j

)
,

be the jth column distance of the convolutional code C. We have the following natural bound

on the dcj.

Theorem 1 A convolutional code of rate 1/2 has the jth column distance bounded above by:

dcj ≤ j + 2. We also have: dfree ≤ 2δ + 2.

Definition 2 A code with dfree = 2δ + 2 will be called MDS convolutional code.

Corollary 3 The index j = 2δ is the earliest step at which a rate 1/2 MDS convolutional

code (dfree = 2δ + 2) can attain equality dcj = dfree in the distance inequality:

dc0 ≤ dc1 ≤ . . . ≤ dc∞ = dfree = 2δ + 2.
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Definition 4 A rate 1/2, degree δ, convolutional code is called strongly MDS if dc2δ =

2δ + 2 = dfree.

Theorem 5 Let C be a 1/2 rate convolutional code of degree δ. Let Hc
2δ =

[
A B

]
,

Ĥc
2δ = B−1Hc

2δ =
[
T I

]
. The following statements are equivalent:

1. The code C is strongly MDS;

2. dc2δ = 2δ + 2 = dfree;

3. The first column [a0, a1, . . . , aδ, 0, . . . , 0]T of the parity check matrix, (obtained after

column permutations to separate the two blocks),

Hc
2δ =



a0 b0

a1 a0 b1 b0

...
...

. . .
...

...
. . .

aδ aδ−1 . . . a0 bδ bδ−1 . . . b0

aδ . . . a1 a0 bδ . . . b1 b0

. . . . . . . . . . . . . . . . . .

aδ . . . a1 a0 bδ . . . b1 b0


, (2.2)

can not be written as a linear combination of any other 2δ columns.

4. The first column (h0, h1, . . . , h
T
2δ) of

Ĥc
2δ =


h0 1

h1 h0 1
...

. . . . . .

h2δ h2δ−1 . . . h0 1


is not a linear combination of 2δ other columns of Ĥc

2δ.

5. The matrix T =


h0

h1 h0

...
. . .

h2δ h2δ−1 . . . h0

 has the property that all its square submatri-

ces Ai1,...,irj1,...,jr
formed by the i1, . . . , ir rows and j1, . . . , jr columns of T , are invertible, for

all 1 ≤ r ≤ 2δ+ 1 and all indices 1 ≤ i1 < . . . < ir ≤ 2δ+ 1, 1 ≤ j1 < . . . < jr ≤ 2δ+ 1

which satisfy jν ≤ iν for ν = 1, . . . , r.

The following process gives us an example of Toeplitz matrices T that satisfyproperty 5

over finite fields.
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Example 6 Let n = 2δ and T ′ = Xn, with X the (n+ 1)× (n+ 1) matrix

X =



1

1 1

1 1
. . . . . .

1 1

1 1


, T ′ =



1

n 1(
n
2

)
n 1

...
...

. . . . . .(
n
n−1

) (
n
n−2

)
. . . n 1

1
(
n
n−1

)
. . . n 1


. (2.3)

Note that the entries on first column of T ′ are the coefficients of the expanded polynomial

(X+1)n. The minors are all positive integers ([1]), and taking the smallest prime p that does

not divide any of them we obtain the matrix T , T := T ′ mod p, with the desired property.

We want to decode the new constructed codes.

Let C be a rate 1/2 MDS convolutional matrix generated by

G(D) =
[
a(D) b(D)

]
with a(D), b(D) of degree δ, satisfying the properties of Theorem 5.

Then we state that the code C is theoretically capable of correcting δ errors in any sliding

window of length 4δ + 2. Indeed, let (y(D), z(D)) ∈ (F[D])2 be a received message. Then

there exists a codeword (v(D), w(D)) ∈ C, and an error vector (f(D), e(D)) ∈ (F[D])2 such

that y(D) = v(D) + f(D), z(D) = w(D) + e(D).

Let y0, . . . , y2δ, z0, . . . , z2δ be some 4δ + 2 consecutive components of the received message

y(D), z(D). Multiplying the received message with the sliding parity check matrix of the

code we obtain the syndrome equations.

We consider a window of 2δ + 1 syndrome equations:

[
T I

]


y0

...

y2δ

z0

...

z2δ


=
[
T I

]


f0

...

f2δ

e0

...

e2δ


=:


s0

s1

...

s2δ

 . (2.4)

Suppose we have corrected all the components received before y0, z0. Assuming that the

weight of the error
[
f0 . . . f2δ e0 . . . e2δ

]T
in this 4δ + 2 window is at most δ, we

find an algorithm that computes f0 and e0. Knowing f0 and e0 we update our received

message, and move one step further. We consider the next sliding window and the sequence

f1, . . . , f2δ+1, e1, . . . , e2δ+1 and correct now f1, e1.

The following theorem tells that such an algorithm theoretically exists.

Theorem 7 Let f = (f0, . . . , f2δ)
T , e = (e0, . . . , e2δ)

T be two vectors in F2δ+1 such that

wt

[
f

e

]
≤ δ. Let

[
T I

] [
f0 . . . f2δ e0 . . . e2δ

]T
=
[
s0 s1 . . . s2δ

]T
. (2.5)
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If

[
f̃

ẽ

]
is another solution of the equation (2.5) with wt

[
f̃

ẽ

]
≤ δ then

f0 = f̃0, e0 = ẽ0.

We sketch here an algorithm for finding f0 and e0. It is a searching algorithm and it uses

heavily the Gaussian elimination method for finding if a vector is in the column space of a

certain matrix.

For any s, s = 1, 2, . . . , (δ − 1), form all the (2δ + 1 − s) × (2δ + 1) submatrices of the

matrix T , (column indices are consecutive):

Ti0,...,i2δ−s =


hi0 hi0−1 . . . h0

hi1 hi1−1 . . . . . . h0

...
...

hi2δ−s hi2δ−s−1 . . . . . . . . . h0

 . (2.6)

For any l, l = 1, 2, . . . , (δ − s) check if[
si0 si1 . . . si2δ−s

]T
can be written as a linear combination of l columns of the matrix Ti0,...,i2δ−s . We start with

s = 1 and let l = 1, l = 2, . . . , l = δ − 1, then s = 2 and try all possible values for l.

After finding one such matrix, we check if[
si0 si1 . . . si2δ

]T
is a linear combination of the corresponding l columns of the matrix T . If it is, then

the coefficients will be the corresponding components of an error f . Store f0, compute

e0 = s0 − h0f0, and move to the next window. If not, keep searching until a good matrix is

found.

This algorithm becomes impractical for large δ and q.

3 Conclusion

In this short paper we introduced a new class of codes which we call strongly MDS convolu-

tional codes.

As parity check matrices for a block code, the matrices [A B], [T I2δ+1], give a block code

very far from being MDS. In fact the minimum distance of this code is 2. However, as part

of the sliding parity check matrix of a rate 1/2 convolutional code, this matrix gives an

excellent code!

Therefore this is one example where a convolutional code performs better than the block

code that stays at the base of the convolution construction.
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The field over which we construct the matrix T may be large. An alternative that we

currently consider is to take T :=
∏n

1 Xi,

Xi =



1

xi 1

xi 1
. . . . . .

xi 1

xi 1


, (3.7)

with all the entries xi, 1 ≤ i ≤ n equal to consecutive powers of a primitive element of an

arbitrary finite field Fq, with at least n + 2 elements. The minor in the lower part of the

matrix T thus obtained, are the skew-Schur-functions in terms of {x1, . . . , xn}, [5, page 344].

Imposing the nonzero conditions on this functions, we might be able to obtain estimates for

the field size, and a matrix T with the desired property, over a suitable field. This method

is subject of further research.

In this paper, we therefore obtain a rate 1/2 convolutional code of degree δ, capable to

correct δ errors in any sliding window of length 4δ + 2.

The best known MDS block code with parameters [n, n/2], n = 4δ+ 2, can correct δ errors

in any slotted window of length 4δ + 2.
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