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Abstract

Consider an affine system with a polytope as state set. State trajectories are ter-
minated when they reach a facet of the polytope and attempt to exit. The realization
problem is considered based on the behavior of the system, i.e. the set of input-output
trajectories on time-intervals of either finite or infinite length. The state set can be
affinely reduced due to non-observability if and only if a subspace of the classical
unobservable subspace, characterized using the normal vectors of the exit facets, is
nontrivial.
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1 Introduction

The purpose of this paper is to present a necessary and sufficient condition for reducibility of

an affine system on a polytope. This reduction problem is motivated by control of piecewise-

linear hybrid systems. A piecewise-linear hybrid system consists of a finite automaton with

at every discrete state of the automaton a continuous-time affine system with a polytope

as state set. Control synthesis for this class of hybrid systems and for affine systems on

polytopes has been treated elsewhere, see [1, 2]. In this context problems of realization

arise, in particular of reachability, observability, and minimality of realizations.

In this paper, the problem is considered whether the state set of an affine system on a

polytope can be reduced while the reduced system still is a realization, meaning that it

represents the same set of input-output trajectories. An affine system on a polytope has

trajectories of infinite length and of finite length; the trajectory terminates when it hits a

facet of the polytope and attempts to exit. Realization based on a set of trajectories has

been studied before in automata theory, in linear systems, see [5, 6], and in the context of

behaviors, see [3]. Novel to realization theory is the simultaneous presence of finite and of

infinite length trajectories.
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The approach to the problem is to use the concept of unobservable subspaces as used

in realization of finite-dimensional linear systems, see [7, 4]. The necessary and sufficient

condition for reducibility is then the existence of a nontrivial unobservable subspace of the

affine system in the classical sense but restricted by the kernel of the normals of the exit

facets. The paper does not discuss the concept of observability of an affine system on a

polytope in full generality; this remains to be done.

2 Affine systems on polytopes

Let N ∈ N, and consider a full-dimensional polytope PN in R
N , with vertices v1, . . . , vM ,

(M > N). This means that PN is the convex hull of {v1, . . . , vM}, and, since PN is full-

dimensional, that there does not exist a hyperplane of R
N containing all vertices v1, . . . , vM .

A full-dimensional polytope with exactly N + 1 vertices is called a full-dimensional simplex.

Alternatively, a polytope may be described as the intersection of a finite number of closed

half spaces. I.e. there exist an integer K ≥ N + 1, non-zero vectors n1, . . . , nK ∈ R
N , and

scalars α1, . . . , αK ∈ R, such that

PN = {x ∈ R
N | ∀i = 1, . . . , K : nT

i x ≤ αi}. (2.1)

Characterization (2.1) is called the implicit description of a polytope. The intersection of a

full-dimensional polytope PN with one of its supporting hyperplanes,

Fi := {x ∈ R
N | nT

i x = αi} ∩ PN ,

is called a facet of PN , if the dimension of the intersection is equal to N − 1. The vector ni

is the normal vector of the facet Fi, (i = 1, . . . , K), and, by convention, ni is of unit length

and always points out of the polytope PN .

An affine map is a function f : R
N1 → R

N2 for which there exist S ∈ R
N2×N1 and q ∈ R

N2

such that f(x) = Sx + q for all x ∈ R
N1. Two polytopes P1 ⊂ R

N1 and P2 ⊂ R
N2 are said

to be affinely isomorphic if there exists an affine map f : R
N1 → R

N2 such that P1 and P2

are bijectively related by f . It is not required that f is a bijection on R
N1\P1.

Definition 2.1. A time-invariant finite-dimensional affine systems on a polytope (FDAP)

is a mathematical structure consisting of a dynamic system defined by the equations,

{
ẋ(t) = Ax(t) + Bu(t) + a, x(t0) = x0,

y(t) = Cx(t) + Du(t) + c,
(2.2)

with A ∈ R
N×N , B ∈ R

N×m, a ∈ R
N , C ∈ R

p×N , D ∈ R
p×m, and c ∈ R

p. Furthermore, the

state x is assumed to be an element of a full-dimensional polytope X ⊂ R
N . Inputs u and

outputs y belong to (polyhedral) sets U ⊂ R
m and Y ⊂ R

p, respectively.
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For any x0 ∈ X and any input trajectory u : [t0, ∞) → U , the differential equation in (2.2)

has a unique solution x : T1 → X. In order to characterize the property x ∈ X, we adopt

the convention that T1 = [t0, ∞) if x(t) ∈ X for all t ∈ [t0, ∞), and T1 = [t0, t1] if there

exists t1 ∈ [t0, ∞) such that x(t) ∈ X for all t ∈ [t0, t1] and there exists an ε > 0 such that

x(s) 	∈ X for all s ∈ (t1, t1 + ε). In the latter case, it is assumed that also input and output

trajectories are restricted to the time interval T1.

An exit facet of an affine system is an (N − 1)-dimensional facet Fi through which the

state may leave the state polytope X. More specifically, if Fi is the intersection of X with

its supporting hyperplane {x ∈ R
N | nT

i x = αi}, then it is an exit facet if there exists an

input trajectory u and a time instant t1 ∈ R, such that the corresponding state trajectory

satisfies x(t) ∈ X for t ∈ [t0, t1] and there exists an ε > 0 such that nT
i x(t) > αi for

t ∈ (t1, t1 + ε) (where for a moment it is assumed that system description (2.2) is also valid

outside the polytope X). To check whether facet Fi is an exit facet, it suffices to check the

velocity vector field ẋ at the vertices of the facet: if at one vertex v of Fi there exists an

input vector u ∈ U such that nT
i ẋ |v= nT

i (Av + Bu + a) > 0, then Fi is an exit facet.

Definition 2.2. For a finite-dimensional affine system on a polytope (FDAP1), the set of

input-output trajectories for a given set of initial conditions X0 ⊆ X is defined as

IO(FDAP1, X0) :=




(u, y) ∈ UT1 × Y T1 |either T1 = [t0, ∞) or T1 = [t0, t1],

and ∃ x0 ∈ X0, such that x, y are solutions of (2.2)

on T1 corresponding to x0, u


 . (2.3)

In particular, IO(FDAP1, X0) will contain trajectories of both finite and infinite length.

If T1 is infinite, the input-output pair (u, y) admits a state trajectory x that remains in the

polytope X forever. If T1 is finite, the corresponding state trajectory will leave the polytope

X at time t1 = max(T1) for the first time.

3 Problem formulation

The realization problem for finite-dimensional affine systems on polytopes will now be for-

mulated in terms of input-output trajectories. This is different from the realization problem

for finite-dimensional linear systems, that is formulated for the impulse response function.

Special to this case is that the state trajectory may leave the polytope in finite time. There-

fore the geometry of the state set and the duration of the input-output trajectories have to

be taken into account.

Definition 3.1. Let U ⊆ R
m and Y ⊆ R

p be polyhedral sets.

(a) A set of input-output trajectories on these sets is defined as the set,

IO ⊂
{

(u, y) ∈ UT1 × Y T1 |either T1 = [t0, ∞) or T1 = [t0, t1],

such that u : T1 → U, y : T1 → Y

}
. (3.1)
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(b) A realization of a set IO of input-output trajectories is a finite-dimensional affine

system on a polytope FDAP1 and a set of initial states X0 ⊆ X such that

IO = IO(FDAP1, X0).

Definition 3.2. Consider the subset of finite-dimensional affine systems on a polytope that

are realizations of a set of input-output trajectories IO.

(a) Define on this subset the relation FDAP2 ≤ FDAP1, if dim(X2) =: N2 ≤ N1 :=

dim(X1), and if there exists a surjective affine map f : X1 → X2 such that for any

input-output pair (u, y) all corresponding state trajectories x1(t) of system FDAP1

have the property that the trajectory defined by x2(t) = f(x1(t)), (t ∈ T1), is a state

trajectory of system FDAP2 corresponding to the same input-output pair (u, y).

(b) Define on this subset the relation FDAP1 ≡ FDAP2 if N1 = N2 and if there exists a

bijective affine transformation f : X1 → X2 such that for any input-output pair (u, y)

the corresponding state trajectories of these systems are affinely related according to

x2(t) = f(x1(t)) for all t ∈ T1.

(c) A realization FDAP1 in this subset is said to be minimal if there does not exist another

realization FDAP2 such that FDAP2 ≤ FDAP1 and FDAP1 	≡ FDAP2.

Problem 3.1. Consider the class of finite-dimensional affine systems on a polytope. Char-

acterize those FDAP-systems that are minimal realizations of their associated set of input-

output trajectories in the sense described above.

In this paper, minimality of realizations is studied as it was specified in Definition 3.2. In

particular, we only consider reduction of the state dimension based on affine transformations

between the state polytopes. Reductions using more general (i.e. non-affine) transformations

may exist, but are not taken into account.

4 Reduction of a realization due to non-observability

In the realization problem for ordinary linear systems, reduction of the dimension of the state

space is possible if the system is either not controllable or not observable. In this paper we

will extend these ideas to affine systems on polytopes, but limit attention to reduction due

to non-observability, i.e. the case X0 = X. In this problem already some new phenomena

occur.

Example 4.1. Let N = 2 and consider the system ẋ1(t) = ax1(t) + u(t), ẋ2(t) = 0, with

output y(t) = x1(t), where the state x = (x1, x2)
T is restricted to the triangle ∆ with vertices

v1 = (−1, 0)T , v2 = (1, 0)T , and v3 = (0, 1)T . Without the restriction to this simplex, it
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is clear that the state variable x2 is neither controllable nor observable, and reduction to a

one-dimensional realization is possible. However, by considering the system on the triangle,

information on the state variable x2 becomes available as soon as the evolution of the system

stops because the state has left the state polytope. Indeed, since the state x will move only

horizontally, it can only leave the triangle through the facet between v2 and v3 or the facet

between v3 and v1. Using the value y(t1) = x1(t1) at the exit time t1, full information on the

value of state variable x2 is obtained: if x1(t1) ≥ 0, then x2(t) = 1−x1(t1), and if x1(t1) < 0,

then x2(t) = 1+x1(t1). As a consequence, the dimension of the state set of this affine system

on a triangle cannot be reduced because state variable x2 is actively involved in the stopping

criterion of reaching an exit facet.

The previous example shows that for the observability and reduction of affine systems on

polytopes, the geometric structure of the state polytope has to be taken into account. In

this section we will present an explicit condition, when reduction of affine systems due to

non-observability is possible. In the proof of this result it is necessary to assume that all

points in the state polytope X may occur as initial state x0, i.e. X0 = X.

Let {Fi | i = 1, . . . , k} denote the set of all exit facets of system (2.2), and assume that

Fi = X ∩ {x ∈ R
N | nT

i x = αi}. For i = 1, . . . , k define Wi := ker(nT
i ) and correspondingly

W :=
k⋂

i=1

Wi = ker(Nk),

with Nk = (n1, n2, . . . , nk)
T ∈ R

k×n. Finally, let V denote the largest A-invariant subspace,

contained in W ∩ ker(C), i.e. for k > 0:

V := ker
(
(CT | NT

k ), AT (CT | NT
k ), . . . , (AT )N−1(CT | NT

k )
)T

. (4.1)

It will be shown that reduction of the dimension of the state polytope X is possible, using

an affine transformation, provided that V 	= {0}.

Let Π denote the canonical projection on R
N/V . In that situation, there is a commuting

diagram of operators, as depicted in Figure 1. Since V is A-invariant, the mapping Ā :

R
N/V −→ R

N/V , given by Ā(x + V ) = Ax + V is well-defined, and satisfies ĀΠ = ΠA.

Similarly, since V ⊂ ker(C), the mapping C̄ : R
N/V −→ R

p, given by C̄(x + V ) = Cx, is

well-defined and C̄Π = C.

Instead of the original system equations, we now consider the projected system, that is

obtained by projecting the state x ∈ X to x̄ = Πx ∈ Π(X). The dynamic equations for this

projected system are given by

{
˙̄x(t) = Āx̄(t) + ΠBu(t) + Πa, x̄(t0) = Πx0,

y(t) = C̄x̄(t) + Du(t) + c,
(4.2)

with state set Π(X) ⊂ R
N/V .
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Figure 1: Diagram of commuting operators.

Lemma 4.1. If X is a full-dimensional polytope in R
N , then Π(X) is a full-dimensional

polytope in R
N/V . Hence, if V 	= {0}, then (4.2) characterizes an affine system on a polytope

of lower dimension than X.

The proof of Lemma 4.1 is based on the observation that if the full-dimensional polytope

X is described as the convex hull of finitely many points {v1, . . . , vM}, then Π(X) is the

convex hull of {Π(v1), . . . , Π(vM)}.

Provided that V 	= {0}, the projected system (4.2) is our candidate reduced system. If the

restrictions that x and x̄ have to be elements of the state polytopes X and Π(X), respectively,

are not taken into account, then x(t) is a state trajectory of system (2.2) corresponding to the

input-output pair (u(t), y(t)) if and only if x̄(t) = Πx(t) is a state trajectory of system (4.2)

corresponding to the same input-output pair, because V is a subspace of the unobservable

subspace 〈ker(C) | A〉. In the generalization of this result to systems on polytopes, the

normal vectors of the exit facets of X play an important role.

Lemma 4.2. Let x be a state trajectory of system (2.2) with input trajectory u, and starting

in initial state x0 at time t0.

(i) If x(t) ∈ X for all t ≥ t0 (i.e. T1 = [t0, ∞)), then x̄(t) = Πx(t) ∈ Π(X) for all t ≥ t0.

(ii) If T1 = [t0, t1], i.e. x leaves the polytope X for the first time at time t1, then x̄ = Πx

also leaves the polytope Π(X) for the first time at time t1.

Idea of the proof: If for some t ∈ R, x(t) ∈ X, then it is obvious that x̄(t) = Πx(t) ∈ Π(X).

The proof that the trajectory x̄ leaves Π(X) at the same time as trajectory x leaves X is

more involved. Let Fi = {x ∈ R
N | nT

i x = αi}∩X be an exit facet of X. Then V ⊂ ker(nT
i ),

and the mapping nT
i : R

N/V −→ R, given by nT
i (x + V ) = nT

i x, is well-defined and satisfies

nT
i Π = nT

i . Since nT
i x ≤ αi for all x ∈ X, also nT

i x̄ ≤ αi for all x̄ ∈ Π(X). Next, assume

that x(t) attempts to leave X through exit facet Fi at time t1. Then there exists ε > 0 such

that nT
i x(t) > αi for all t ∈ (t1, t1 + ε). Hence also nT

i x̄(t) = nT
i Πx(t) = nT

i x(t) > αi for

t ∈ (t1, t1 + ε), which implies that also x̄(t) 	∈ Π(X) for t ∈ (t1, t1 + ε).
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Corollary 4.1. The original system (2.2) and the projected system (4.2) realize the same

input-output trajectories, both of finite and infinite length, provided that in both systems the

initial state may be chosen arbitrarily in X and Π(X) respectively. In particular, if V 	= {0}
then system (2.2) may be reduced to system (4.2) using the canonical projection Π as the

affine reduction map.

Finally it is shown that V 	= {0} is not only a sufficient but also a necessary condition for

reduction.

Proposition 4.1. Consider system (2.2) and assume that there exists an affine map f ,

reducing system (2.2) (in the sense of Definition 3.2) to a realization

{
ẋ1(t) = A1x1(t) + B1u(t) + a1, x1(t0) = x1,0,

y(t) = C1x1(t) + D1u(t) + c1.
(4.3)

I.e. system (4.3) is an affine system on a full-dimensional polytope X1 of dimension N1 < N ,

and admits the same set of input-output trajectories as system (2.2). Then V 	= {0}.
Proof: Let the affine map f reducing (2.2) to (4.3) be given by f : X −→ X1 : f(x) = Sx+q,

with S ∈ R
N1×N of full row rank and q ∈ R

N1 . We show that {0} 	= ker(S) ⊂ V .

Let (u(t), y(t)) be an arbitrary pair of input-output trajectories, and assume that x(t) is

a corresponding state trajectory of system (2.2). Then x1(t) = Sx(t) + q is a corresponding

state trajectory of system (4.3) and we have

ẋ1(t) = Sẋ(t) = S(Ax(t) + Bu(t) + a) = SAx(t) + SBu(t) + Sa

on the one hand, and

ẋ1(t) = A1x1(t) + B1u(t) + a1 = A1Sx(t) + B1u(t) + (A1q + a1)

on the other. For u(t0) = 0, and since x(t0) = x0 may be chosen arbitrarily in the full-

dimensional polytope X, we conclude that SA = A1S (*).

Similarly, since

y(t) = Cx(t) + Du(t) + c =

= C1x1(t) + D1u(t) + c1 = C1Sx(t) + D1u(t) + (C1q + c1),

and using the same arguments as above, we find C1S = C (**).

Next, let nT
i x = αi (i = 1, . . . , k) denote the hyperplanes containing the exit facets of

system (2.2), and let mT
j x1 = βj (j = 1, . . . , �) denote the hyperplanes containing the exit

facets of system (4.3). If a trajectory x(t) of (2.2) leaves X at time t1, then the corresponding

trajectory x1(t) = Sx(t) + q leaves X1 also at time t1. In combination with a continuity

argument, this implies that the affine map f maps the exit facets of (2.2) to exit facets of

(4.3), i.e. for all i ∈ {1, . . . , k} there exists a j ∈ {1, . . . , �} such that all x ∈ R
N satisfying
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nT
i x = αi also satisfy mT

j (Sx + q) = βj. Since ni 	= 0 and mT
j S 	= 0, the equations nT

i x = αi

and mT
j Sx = βj − mT

j q describe the same hyperplane, so for all i ∈ {1, . . . , k} there exists a

ci 	= 0 and a j ∈ {1, . . . , �} such that nT
i = cim

T
j S (***).

(*) implies that ker(S) is an A-invariant subspace, (**) indicates that ker(S) ⊂ ker(C),

and (***) shows that ker(S) ⊂ ∩k
i=1ker(n

T
i ) = W . So ker(S) is an A-invariant subspace

contained in ker(C) ∩ W , hence ker(S) ⊂ V . Since ker(S) 	= {0}, also V 	= {0}.

Theorem 4.1. FDAP-system (2.2) with the full state polytope X as set of initial conditions

is a minimal realization in the sense of Definition 3.2 if and only if V = {0}, where V

denotes the subspace as defined in (4.1).

Example 4.2. The system in Example 4.1 is a minimal realization of its input-output

behavior because V = {0}. Indeed, the normal vectors to the exit facets of the polytope are

n1 = (1, 1)T and n2 = (−1, 1)T , and thus V ⊂ ker(nT
1 ) ∩ ker(nT

2 ) = {0}.

Example 4.3. Consider the system ẋ1(t) = ax1(t) + u(t), ẋ2(t) = 0 on the square −1 ≤
x1 ≤ 1, −1 ≤ x2 ≤ 1, with output y(t) = x1(t). Now the exit facets are segments of the

lines x1 = 1 and x1 = −1 with normal vectors n1 = (1, 0)T and n2 = (−1, 0)T , respectively.

Since ker(C) ∩ ker(nT
1 ) ∩ ker(nT

2 ) = 〈(0, 1)T 〉 is A-invariant, V = 〈(0, 1)T 〉. Therefore this

realization is not minimal, and may be reduced in dimension by deleting the state variable

x2.

5 Concluding remarks

A realization of a set of input-output trajectories of an affine system on a polytope can be

affinely reduced if and only if a particular subspace generated by the unobservable subspace

and the null space of the normals of the exit facets, is nontrivial. This realization problem

is of interest to control of piecewise-linear hybrid systems.

Further research on the realization problem of affine systems on polytopes is required. If

the set of initial states is not equal to the full state polytope, the problem becomes much

harder because the reachable subset of such an affine system is not necessarily a polytope.
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