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Abstract

We give a new sufficient condition for the arbitrary pole assignability of a system
by decentralized dynamic compensators. Using such condition we are able to derive a
new bound on the degrees of decentralized dynamic compensators so that the generic
systems have the arbitrary pole assignability.

1 Introduction

For many large scale systems like electric power systems, transportation systems and whole

economic systems, it is desirable to decentralize the control task. This is in particular prefer-

able if the measurements have been taken on decentralized local channels and the controls

can be applied on local channels only. Decentralized stabilization and pole assignment of

linear systems have been studied by many authors. Wang and Davison [12] proved that

decentralized stabilization using local dynamic compensators is possible if and only if the

fixed modes are stable. Corfmat and Morse [2] proved that a strongly connected system can

be made controllable and observable through a single channel by local static feedback if and

only if the set of fixed modes is empty. Thus the poles of such a system can be assigned

freely. The control strategy of [2] is to apply local static feedback to all but one channel,

in order to make the resulting single channel system controllable. Then a dynamic feedback

controller is applied to the channel to assign the closed-loop poles. Wang [13] proved that

if the dimension of the set of all static local compensators is greater than the McMillan

degree of the system, then almost all r-channel systems having the same number of inputs

or outputs on the local channels are arbitrarily pole assignable by decentralized static out-

put feedback. Ravi, Rosenthal, and Wang [7] introduce a parameterization of the set of

all decentralized dynamic compensators, and proved that the decentralized pole assignment

map is onto over C for generic systems as soon as the dimension of the set of decentralized

dynamic compensators is greater than or equal to the total number of the closed-loop poles.

However such result is not true over R as demonstrated by Willems and Hesselink for the

centralized case [16].

The problem we are interested in is to find minimal order decentralized dynamic compen-

sators to stabilize or to assign the poles of a given system. We give a new sufficient condition

which ensures arbitrary pole assignability for a given system. Using such condition we are
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able to derive a new bound on the degrees of decentralized dynamic compensators so that a

generic system has the arbitrary pole assignability.

2 Preliminary Results

We first define some terminologies about the polynomial matrices. Let M(s) be a p×(m+p)

polynomial matrix over R with m > 0. The ith row degree of M(s) is defined as the highest

polynomial degree among all the entries in the ith row. The high degree coefficient matrix

of M(s), denoted by Mh, is defined to be the matrix consisting of the coefficients of the

monomials whose degrees equal the corresponding row degrees. The McMillan degree of a

full rank, non-square polynomial matrix is defined to be the highest degree of its full size

minors. A matrix M(s) is called row proper if Mh has full rank, and it is called irreducible

if the full size minors of M(s) are relatively prime. M(s) is called minimal if its rows form

a minimal basis of the row space; i.e. they form a basis, and the sum of the row degrees is

minimal among all the bases of the row space. It has been proved in [4] that a p× (m+ p)

polynomial matrix M(s) is minimal if, and only if, it is row proper and irreducible. The row

degrees of a minimal basis of the row space of M(s) are called the Forney indices of M(s).

Similar terminologies are also defined for (m+p)×p matrices if we interchange “row” and

“column”. Let M(s) be a minimal matrix. A dual matrix of M(s), denoted by M⊥(s), is an

(m+ p)×m minimal polynomial matrix such that

M(s)M⊥(s) = 0.

The Forney indices of M⊥(s) are called the dual Forney indices of M(s). The sum of the

Forney indices equals the sum of the dual Forney indices [4].

Proposition 2.1. [5] Let P be the set of all p× (m+ p) polynomial matrices of row degrees

(µ1, . . . , µp). Set n = µ1 + · · · + µp, and let k = bn/mc be the largest integer ≤ n/m, and

d = n − km be the remainder of n divided by m. There exists a nonempty Zariski open set

S ⊂ P of minimal matrices such that

1. every matrix M(s) in S has the dual Forney indices

νg := {k, . . . , k︸ ︷︷ ︸
m−d

, k + 1, . . . , k + 1︸ ︷︷ ︸
d

}, (2.1)

and

2. for all M(s) ∈ S, the coefficients of the polynomials in M⊥(s) are rational functions,

with nonzero denominators, of coefficients of the polynomials in M(s).

The set of all unimodular column equivalence classes of (m+p)×m irreducible polynomial

matrices of McMillan degree n is a quasi projective variety [8]. In this quasi projective variety,
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the equivalence classes with the Forney indices νg defined in (2.1) form a nonempty Zariski

open set, and the set of all the other equivalence classes has strictly smaller dimension [9].

For this reason we call the Forney indices νg defined in (2.1) the generic dual indices of P .

We formulate the problem in the behavior framework [15]. Consider an r-channel linear

system

ẋ = Ax+
r∑

i=1

Biui, yi = Cix+
r∑

j=1

Dijuj, i = 1, 2, . . . , r (2.2)

where x, ui, yi are n,mi, pi vectors, respectively, and ui and yi are the input and output of

the ith channel.

Let

m = m1 + · · ·+mr, p = p1 + · · ·+ pr.

Write the system as


d
dt
I − A 0 −B1 0 −B2 · · · 0 −Br

C1 −I D11 0 D12 · · · 0 D1r

C2 0 D21 −I D22 · · · 0 D2r

...
...

...
...

...
...

...
...

Cr 0 Dr1 0 Dr2 · · · −I D2r





x

y1

u1

y2

u2

...

yr

ur


= 0. (2.3)

If the system is observable, then there is a unimodular polynomial matrix U(s) such that

U(s)


d
dt
I − A

C1

...

Cr

 =


I

0
...

0

 .
Multiplying (2.4) by U( d

dt
) from left, we then have an equivalent system[

I ∗
0 P ( d

dt
)

] [
x

w

]
= 0, (2.4)

where

w =

 w1

...

wr

 with wi =

[
yi

ui

]
and the ∗ represents something unimportant.

Under behavior framework,

P (
d

dt
)w = 0 (2.5)
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is called the kernel representation of the system. If in addition, the system is also observable,

then the McMillan degree of P (s) equals n, and by applying elementary row operations if

necessary, we can always assume that the p ×m + p matrix P (s) is minimal. In this case,

there is also an image representation of the system. Since P (s) is minimal, there exists a

unimodular matrix U(s) such that P (s)U(s) = [I, 0]. Let

U(s) = [Q̂(s), Q(s)]

where Q(s) is (m+ p)×m, and [
v̂

v

]
= U−1(

d

dt
)w

where v ∈ Rm. Then (2.5) becomes

v̂ = 0,

and

w = Q(
d

dt
)v (2.6)

is called image representation of the system.

Let the decentralized dynamic compensators in the image representation be given by

wi = Qi(
d

dt
)vi, i = 1, . . . , r, (2.7)

where each Q(s) is (mi + pi)× pi minimal polynomial matrix of McMillan degree qi (notice

that the inputs of the ith compensator are the outputs of the ith local channel, which is in

Rpi).

The closed-loop system becomes

P (
d

dt
)

 Q1(
d
dt

)
. . .

Qr(
d
dt

)


 v1(t)

...

vr(t)

 = 0, (2.8)

and the closed-loop poles are given by the zeros of

det

P (s)

 Q1(s)
. . .

Qr(s)




provided it is not a zero polynomial.

Definition 2.2. We say an r-tuple decentralized compensators {Qi(s)} dependent if

det

P (s)

 Q1(s)
. . .

Qr(s)




is a zero polynomial.
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Crucial to our study is the decentralized pole assignment map. We only define it for a

generic set of decentralized dynamic compensators of degrees q1, . . . , qr. Let

ki = bqi/pic

be the largest integer less than or equal to qi/pi,

di = qi − kipi

be the remainder of qi divided by pi, and let G be the set of all r-tuple polynomial matrices

Q(s) = diag (Q1(s), . . . , Qr(s)) such that each Qi(s) is (mi + pi) × pi with column degrees

at most

ki, . . . , ki︸ ︷︷ ︸
pi−di

, ki + 1, . . . , ki + 1︸ ︷︷ ︸
di

.

Define the pole assignment map χ : G → Rn+q1+···+qr+1

χ(Q(s)) = det (P (s)Q(s))) (2.9)

Proposition 2.3. The pole assignment map is onto if there is a r-tuple dependent decen-

tralized compensators Q(s) ∈ G such that the Jacobin dχQ is onto.

Proof. χ maps a neighborhood of Q(s) to a neighborhood of origin by the inverse function

theorem. Since χ is homogenous, χ is onto the whole Rn+q1+···+qr+1.

Proposition 2.4. [10, Theorem 3.10] The Jacobian dχQ : G → Rn+q1+···+qr+1 is given by

dχQ(X(s)) = tr(R(s)X(s))

where

R(s) = adj(P (s)Q(s))P (s).

3 Main Results

In this section we give a new bound for the degrees of pole assigning decentralized compen-

sators for the generic systems.

Theorem 3.1. A r-tuple decentralized dependent compensators of degrees at most (q1, . . . , qr)

exists if either

qi + (bqi/pic+ 1)(mi − 1) ≥ bn/pc, i = 1, . . . , r, (3.1)

or

qi + (bqi/mic+ 1)(pi − 1) ≥ bn/mc, i = 1, . . . , r. (3.2)
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Proof. We only need to prove one of the cases. The second case can be proved similarly if we

consider the image representation of the system and kernel representation the compensator.

Assume

qi + (bqi/pic+ 1)(mi − 1) ≥ bn/pc, i = 1, . . . , r.

Let

P (s) =

[
α(s)

P̂ (s)

]
be minimal of dgree n, where α(s) is a row of the smallest degree. Write

α(s) = (α1(s), . . . , αr(s))

where each αi(s) is a (mi + pi)-vector. Then row deg αi(s) ≤ bn/pc.
We construct a decentralized dependent compensator as follows: For each αi(s), let

α⊥i (s) = [f1(s), . . . , fmi+pi−1(s)]

where

deg f1 ≤ · · · ≤ deg fmi+pi−1.

Define

Qi(s) = [f1(s), . . . , fpi
(s)].

Then

(Q1(s), . . . , Qr(s))

is a r-tuple decentralized dependent compensators.

The McMillian degree of Qi(s) is deg f1 + · · ·+ deg fpi
, and we claim that it is at most qi.

If not

deg f1 + · · ·+ deg fpi
> qi

then deg fpi
≥ bqi/pic+ 1 so

bn/pc ≥ degαi(s)

≥ deg f1 + · · ·+ deg fmi+pi−1

> qi + (bqi/pic+ 1)(mi − 1)

which contradicts the condition.

If such Q(s) ∈ G, then the Jacobin dχQ has a very simple form.

Lemma 3.2. Let

P (s) =

[
α(s)

P̂ (s)

]
.

and α(s)Q(s) = 0. Then

dχQ(X(s)) = det

[
α(s)X(s)

P̂ (s)Q(s)

]
.
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Proof. Since α(s)Q(s) = 0, it follows that only the first column of adj(P (s)Q(s)) is nonzero.

Let it be η(s). Then

R(s) = adj(P (s)Q(s))P (s) = η(s)α(s)

and

dχQ(X(s)) = tr(R(s)X(s)) = α(s)X(s)η(s) = det

[
α(s)X(s)

P̂ (s)Q(s)

]
.

Theorem 3.3. A system P (s) has the arbitrary pole assignability by decentralized dynamic

compensators of degrees at most (q1, . . . , qr) where

qi + (bqi/pic+ 1)(mi − 1) ≥ bn/pc, i = 1, . . . , r

if

1. P (s) has the generic Forney indices

(l, . . . , l︸ ︷︷ ︸
p−e

, l + 1, . . . , l + 1︸ ︷︷ ︸
e

), l = bn/pc, e = n− lp;

2. Each αi(s) has the generic dual Forney indices,

( ε, . . . , ε︸ ︷︷ ︸
mi+pi−1−δ

, ε+ 1, . . . , ε+ 1︸ ︷︷ ︸
δ

), ε = bl/(mi + pi − 1)c, δ = l − ε(mi + pi − 1)

where α(s) = (α1(s), . . . , αr(s)) is a row of P (s) of the smallest degree with each

αi(s) ∈ Rmi+pi;

3. P̂ (s)Q(s) is irreducible with McMillan degree

n+ q1 + · · ·+ qr − bn/pc −minbqi/pic,

where

Q(s) = diag(Q1(s), . . . , Qr(s))

and each (mi + pi) × pi matrix Qi(s) consists of pi columns of αi(s)
⊥ of the smallest

column degrees, and P̂ (s) is the (p−1)× (m+p) matrix formed by removing α(s) from

P (s).

Proof. By Lemma 3.2, we need to show that the linear map

dχQ(X(s)) = det

[
α1(s)X1(s), . . . , αr(s)Xr(s)

P̂ (s)Q(s)

]

is onto the space of all polynomials of degree at most n+ q1 + · · · qr.
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Let the column degrees of Q(s) = diag(Q1(s), . . . , Qr(s)) be

(ν1, . . . , νp),

and define

Z = {z(s) = (z1(s), . . . , zp(s)) | deg zj(s) ≤ l + νj}.

We write the linear map dχQ into a composition of two linear maps:

1. φ : G → Z defined by

φ(X(s)) = (α1(s)X1(s), . . . , αr(s)Xr(s)),

and

2. ψ : Z → Rn+q1+···+qr+1 defined by

ψ(z(s)) = det

[
z(s)

P̂ (s)Q(s)

]
,

and show both of them are onto.

Let

Xi(s) = [xξi+1, . . . , xξi+pi
], ξ1 = 0, ξi = p1 + · · · pi−1.

To show that φ is onto, it is enough to show that

φj(xj) := αixj, ξi + 1 ≤ j ≤ ξi + pi

is onto the space of polynomials of degree at most l + νj for all the xj of column degrees at

most νj.

By [1] φj has a rank

(mi + pi)(νj + 1)−
∑

µs≤νj

(νj + 1− µs)

where {µs} are the dual Forney indices of αi(s). When νj = ε∑
µs≤νj

(νj + 1− µs) = mi + pi − 1− δ

and when νj = ε+ 1 ∑
µs≤νj

(νj + 1− µs) = 2(mi + pi − 1)− δ.

In both cases

rank φj = l + νj + 1,

and therefore φj is onto.
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Since the dimension of Z is p(l+ 1) + q1 + · · ·+ qr and the dimension of the range of ψ is

n+ q1 + · · ·+ qr + 1, in order to show that ψ is onto, it is sufficient to show that

dim kerψ = p(l + 1)− n− 1 = p− e− 1.

By re-arrange of rows if necessary, we can assume that P̂ (s) has row degrees

(l, . . . , l︸ ︷︷ ︸
p−1−e

, l + 1, . . . , l + 1︸ ︷︷ ︸
e

).

If z(s) ∈ kerψ, then by [4]

z(s) = [a1(s), . . . , ap−1(s)]P̂ (s)Q(s)

for some polynomials {aj(s)}. We claim that aj(s) = aj for j ≤ p− 1− e, and aj(s) = 0 for

j > p− 1− e. If not, then

deg y(s) := deg[a1(s), . . . , ap−1(s)]P̂ (s) > l.

Note that the given conditions imply that P̂hQh has full rank p − 1, because its full size

minors are the coefficients of the monomials of sn+q1+···+qr−bn/pc−minbqi/pic of the corresponding

full size minors of P̂ (s)Q(s), and therefore not all of them are zero. Since yh ∈ row spaceP̂h,

we must have yhQh 6= 0. Assume that j-th entry of yhQh is nonzero. Then deg zj(s) > l+ νj

and z(s) 6∈ Z. Therefore

kerψ ⊂ {[a1, . . . , ap−1−e, 0, . . . , 0]P̂ (s)Q(s)}

and dim kerψ ≤ p− 1− e.

Remark 3.4. The Forney indices of P (s) are the observability indices of the system.

Finally since the conditions of Theorem 3.3 are satisfied by generic systems (see [5]), we

have

Theorem 3.5. The closed loop poles of generic m-input, p-output, system of McMillian

degree n can be arbitrarily assigned by a decentralized dynamic compensator of McMillian

degrees (q1, . . . , qr) if either

qi + (bqi/pic+ 1)(mi − 1) ≥ bn/pc, i = 1, . . . , r,

or

qi + (bqi/mic+ 1)(pi − 1) ≥ bn/mc, i = 1, . . . , r.

where mi, pi are the numbers of inputs and outputs, respectively, for the ith local channel.
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