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Abstract

This paper develops a new approach for the output model reference adaptive control
of linear continuous-time plants with state delays. The main idea is to include into
the control law a feedforward component which compensates for the delayed states, in
addition to output feedback. The feedforward is formed by special adaptively adjusted
prefilters as a function of the delayed state of the reference model. The output feedback
component is designed as for a plant without delay, but applied to the time-delay plant.
Such a controller structure containing adaptive output error feedback and adaptive
prefilters from the delayed reference model makes it possible to solve the problem
of adaptive exact asymptotic output tracking under parametric uncertainties. The
stability is analyzed using the Lyapunov-Krasovskii functional method. Simulation
results show the effectiveness of the proposed scheme.

1 Introduction

The problem of output model reference control (MRAC) of continuous time plants with

state delays is one of the potentially difficult problems of adaptive control theory. Taking

into account the significance of time-delay systems, this problem is of fundamental impor-

tance from a theoretic point of view and also of great practical interest. To the authors’

knowledge, there is no effective method available in the literature which is able to handle this

problem. The difficulty in solving it emanates from the fact that the feedback connection of

a plant with state delays produces a transcendental transfer function. For such systems it

is impossible to apply the conceptually simple certainty equivalence approach in a straight-

forward way. Finding a controller structure that satisfies the exact plant-model matching or

perfect model following conditions [1, 2] remains a difficult open problem. It is difficult to

find a controller structure that admits perfect output tracking. In other words, this is so

because the approach used in classical certainty equivalence adaptive control theory relies

on the Kalman-Yakubovich lemma. To find a generalized version of the Kalman-Yakubovich

lemma in the context of time-delay systems remains a difficult open problem, a problem that

we do not intend to tackle. Our main idea for the design of output MRAC continuous time

linear plants with state delays is to compensate the delayed states with delayed states of
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the reference model. For this purpose an adaptive dynamic prefilter from the delayed refer-

ence model will be introduced. Thus, the exact asymptotic output tracking problem will be

solved, using output feedback, together with feedforward from the reference model.

We define the controller as the sum of two components, u(t) = uf (t) + ug(t). The output

feedback component uf is designed as for a plant without delay, but applied to the time-delay

plant, whereby the assumptions about the time-delay plant are such that uf (t) can be made

stabilizing. The feedforward component ug is the output of the adaptively adjusted prefilter.

2 Plant model and problem formulation

The class of plants we shall consider in this paper is of the form

ẋ(t) = Ax(t) + bu(t) + Aτx(t− τ)

y(t) = cT x(t) (2.1)

where x ∈ Rn, u(t) ∈ R and y(t) ∈ R. The constant matrices A, Aτ and vectors b, c of

appropriate dimensions are unknown. τ ∈ R+ is the known time delay. We also assume that

there exists vector a∗τ ∈ Rn such that Aτ = ba∗Tτ .

We shall denote as W0(s) the transfer function of the system without delay. We assume

that

W0(s) = cT (sI − A)−1b = kp
N(s)

D(s)
(2.2)

satisfies the standard assumptions of adaptive control theory, e.g. [1, 3].

(A1) D(s) is a monic polynomial of degree n.

(A2) W0(s) is minimum phase, i.e. N(s) is Hurwitz.

(A3) The relative degree is one.

(A4) The sign of the high frequency gain kp is known.

The minimum phase assumption (A2) is fundamental in MRAC schemes. Assumption (A3)

focuses on the simplest case amenable to Lyapunov designs. The same idea can be extended

to higher relative degree. For the case of relative degree greater than two, it is required to

use “error augmentation” and/or “tuning error normalization”, see e.g. [3].

Our objective is to determine a bounded control input u(t) to the plant using a differentia-

tor free controller so that the output y(t) of the controlled plant (2.1) asymptotically exactly

follows the output ym of a stable reference model

ẋm(t) = Amxm(t) + bmr(t)

ym(t) = cT
mxm(t) (2.3)

where xm ∈ Rn, r(t) and ym(t) ∈ R. r(t) is the reference input which is assumed to be

a uniformly bounded and piecewise continuous function of time. The transfer function of

reference model is strictly positive real.
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3 Proposed adaptive controller

We define the controller as the sum of two components

u(t) = uf (t) + ug(t) (3.4)

where uf (t) is the feedback component and ug(t) is the feedforward component.

3.1 Feedback component

The differentiator free output feedback component uf (t) is designed as in conventional MRAC

schemes for a plant without delay. This has been widely analyzed in the literature of adaptive

control, see e.g. [1, 3]

uf (t) = Wp(s)[u](t) + Wf (s)[y](t) + Kee(t) + Krr(t) (3.5)

where

Wp(s) = KT
p H(s), Wf (s) = KT

f H(s)

H(s) =
[1, s, . . . , sn−2]T

F (s)
∈ Rn−1

Kp ∈ Rn−1, Kf ∈ Rn−1, Ke, Kr ∈ R

and F (s) is any monic Hurwitz polynomial of degree n− 1.

The state space realization of (3.5) is

ẋp(t) = Fxp(t) + gu(t)

ẋf (t) = Fxf (t) + gy(t)

K(t) = [KT
p , KT

f , Ke, Kr]
T

ωf (t) = [xT
p (t), xT

f (t), e(t), r(t)]T

uf (t) = KT (t)ωf (t) (3.6)

where

e(t) = y(t)− ym(t) (3.7)

is the tracking error, (F, g) is an asymptotically stable system in controllable canonical form

with the elements in the last row equal to the coefficients of the characteristic polynomial of

W0(s), xp(t) ∈ Rn−1, xf (t) ∈ Rn−1, F ∈ R(n−1)×(n−1), g ∈ Rn−1. The vector of adaptation

gains K is the estimate of the unknown parameters K∗
p , K∗

f , K∗
e , K

∗
r . The only difference is

that in the regressor ω(t) the tracking error e(t) is used instead of y(t).

It is well known [1, 3] that a parameter vector K∗ = [K∗T
p , K∗T

f , K∗
e , K

∗
r ]T exists such that if

K = K∗, the transfer function of the plant without delays W0(s) together with the feedback

controller matches that of the reference model Wm(s) exactly.
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3.2 Feedforward component

The reference model based feedforward component ug(t) is defined as the output of an

adaptive dynamical prefilter. The prefilter in state space form and ug(t) are defined as

follows

żm(t) = Fdzm(t) + gdxm(t− τ)

ug(t) = −KT
m(t)ωm(t) + KT

z (t)zm(t) (3.8)

where ωm(t) = [ym(t), xm(t − τ)T ]T , Km(t) = [−Km1(t), KT
m2(t)]

T ∈ Rn+1 and Kz(t) ∈
Rn(n−1) are the time-varying adaptation gain vectors.

The state vector of the prefilter

zm(t) ∈ Rn(n−1) = [z1T
m (t), . . . , znT

m (t)]T

has the components

ż1
m(t) = Fz1

m(t) + gx1
m(t− τ),

...

żn
m(t) = Fzn

m(t) + gxn
m(t− τ) (3.9)

where Fd ∈ Rn(n−1)×n(n−1) = block-diag(F ), and gd ∈ Rn(n−1)×n = block-diag(g). This

prefilter is the main contribution of our approach.

4 Error equation

With the controller (3.5) and the parameter error ∆K(t) = K(t)−K∗, the overall closed-loop

system becomes

˙̂x(t) = Âx̂(t) + b̂[∆KT (t)ωf (t) + K∗
r r(t)−K∗

e ym(t) + ug(t)] + b̄a∗Tτ x(t− τ)

y(t) = ĉm
T x̂ (4.10)

where x̂(t) = [xT (t), xT
p (t), xT

f (t)]T ∈ R3n−2, ĉm = [cT , 0, 0]T ∈ R3n−2 and

Â =

 A + bK∗
yc

T bK∗T
p bK∗T

f

gK∗
e c

T F + gK∗T
p gK∗T

f

gcT 0 F

 , b̂ =

 b

g

0

 , b̄ =

 b

0

0

 (4.11)

As follows from Fig. 1 the term from the delay state a∗Tτ x(t − τ) that enter at the input

to the plant are not available as an input to the precompensator Wp from (3.5). Since

Ŵp(s) =
1

1−Wp(s)
=

Nm(s)

N(s)
(4.12)
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Figure 1: Block diagram of closed loop system
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Figure 2: Block diagram of closed loop system - Equivalent form 1.

and since both Nm(s) and N(s) are assumed Hurwitz, we have that Ŵp(s) and Ŵ−1
p (s) are

stable transfer functions. Therefore we can reflect the signal a∗Tτj x(t− τ) to the input of the

closed-loop system using standard transfer function manipulations as shown in Fig. 2 – 3.

In doing this, we introduce a new subsystem into the analysis, whose transfer function is

Ŵ−1
p (s) = 1−Wp(s) with input a∗Tτ x(t− τ), output yx(t)

yx = (1−Wp(s))a
∗T
τ x(t− τ)

= a∗Tτ x(t− τ)−Wp(s)[a
∗T
τ x(t− τ)]

Since a∗τ is a constant, yx(t) can be rewritten as

yx(t) = a∗Tτ x(t− τ)− a∗Tτ WpIn[x(t− τ)] (4.13)

where In is n× n identity matrix. Consider the realization of (4.13)

żx(t) = Fdzx(t) + gdx(t− τ), zx(t0) = 0

yx(t) = a∗Tτ x(t− τ)− â∗Tτ zx(t) (4.14)

where zx(t) ∈ Rn(n−1) = [z1T
x (t), . . . , znT

x (t)]T , Kpd ∈ Rn×n(n−1) = block-diag(K∗T
p ),

â∗τ = KT
pda

∗
τ ∈ Rn(n−1), and Fd, gd from (3.8).

Defining x̂m(t) as the reference model state corresponding to x̂(t) when the parameter

errors are zero [1], the augmented error as ê(t) = x̂(t) − x̂m(t), we obtain the augmented
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error model in the form

˙̂e(t) = Âê(t) + b̂
[
∆KT (t)ωf (t)−K∗

e ym(t) + ug(t) + a∗Tτ LT x̂(t− τ)− â∗Tτ zx(t)
]

żx(t) = Fdzx(t) + gdL
T x̂(t− τ)

e(t) = ĉT
mê(t) (4.15)

where L = [In×n, 0n×(n−1), 0n×(n−1)]
T .

Now we introduce ze(t) and zm(t) as ze(t) + zm(t) = zx(t). Then from (4.15), (3.8) we get

˙̂e(t) = Âê(t) + b̂a∗Tτ LT ê(t− τ)− b̂â∗Tτ ze(t)

+b̂∆KT (t)ωf (t) + b̂∆KT
m(t)ωm(t) + b̂∆KT

z (t)zm(t)

że(t) = Fdze(t) + gdL
T ê(t− τ)

żm(t) = Fdzm(t) + gdxm(t− τ)

e(t) = ĉT
mê(t) (4.16)

where

∆Km(t) = [(Km1(t)−K∗
e ), (a∗τ −Km2(t))

T ]T

∆Kz(t) = Kz(t)− â∗τ

ωm(t) = [ym(t), xm(t− τ)T ]T . (4.17)

5 Adaptation algorithms design

We denote the solutions of the system (4.16) by ê(∆K(t), ∆Km(t), ∆Kz(t))(t) and prove the

following theorem

Theorem 5.1. Consider the closed-loop system consisting of the plant described by (2.1),

and the controller given by (3.4). Then all the signals in the system are bounded and the
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tracking error e(t)→ 0 as t→∞ if we choose the adaptive laws as

∆K̇(t) = −Γ1e(t)ωf (t)

∆K̇m(t) = −Γ2e(t)ωm(t)

∆K̇z(t) = −Γ3e(t)zm(t) (5.18)

where Γ1 = ΓT
1 > 0, Γ2 = ΓT

2 > 0, Γ3 = ΓT
3 > 0 are constant matrices.

Proof: (Outline). We introduce the following Lyapunov-Krasovskii functional:

V (ê, ze, ∆K, ∆Km, ∆Kz) = êT (t)Peê(t) + zT
e Pzze +

∫ t

t−τ

êT (s)Qz ê(s)ds

+(∆K − K̂1)
T Γ−1(∆K − K̂1)

+∆KT
mΓ−1∆Km + ∆KT

z Γ−1∆Kz (5.19)

where K̂1 = −r0b̂
T Pe and r0 is a some constant.

The matrices Pe, Pz satisfy the equations

ÂT Pe + PeÂ = −Qe

Peb̂ = ĉm

F T
d Qe + QeFd = −Qz (5.20)

where both Qe and Qz are positive definite matrices suitable dimensions. Compare the

upper two equations of (5.20) with the Kalman-Yakubovich lemma. Note that the transfer

function of the reference model (2.3) is strictly positive real and Fd is stable.

We shall compute the derivative of V along the solutions of the model transformation

(4.16). We get

V̇ ≤ −qeê
T ê− qzz

T
e ze ≤ 0 (5.21)

where qe and qz are some positive constants.

Furthermore, using standard arguments from stability theory [1, 3], we conclude that the

solutions ê are bounded and e(t)→ 0 as t→∞. A full proof is found in [4]

6 Example

We illustrate the application of the obtained adaptation algorithms for the following

unstable second order plant[
ẋ1(t)

ẋ2(t)

]
=

[
0 1

−1 0

] [
x1(t)

x2(t)

]
+

[
1

0

]
u(t)

+

[
−0.2 −0.1

0 0

] [
x1(t− 4)

x2(t− 4)

]
y(t) = [1.0 0.5]

[
x1(t)

x2(t)

]
(6.22)
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The initial conditions of the plant states are x(0) = [0 0]T

It is required to design u such that the output y(t) track the output ym(t) of the reference

model

ẋm(t) =

[
−2 −1

1 0

]
xmi(t) +

[
1

0

]
r(t)

ym(t) = [1 1]xm(t) (6.23)

According to (3.4), (3.5) and (3.8), the control law u(t) = uf + ug is given by

Feedback component

ẋp(t) = Fxp(t) + gu(t),

ẋf (t) = Fxf (t) + gy(t),

uf (t) = Kp(t)xp(t) + Kf (t)xf (t) + Ke(t)e(t) + Kr(t)r(t)

= KT (t)ωf (t) (6.24)

where K(t) = [Kp(t), Kf (t), Ke(t), Kr(t)]
T , ωf = [xp(t), xf (t), e(t), r(t)]

T , F = −1, g = 1

Feedforward component

[
żm1(t)

żm2(t)

]
=

[
F 0

0 F

] [
zm1(t)

zm2(t)

]
+

[
g 0

0 g

] [
xm1(t− τ)

xm2(t− τ)

]
(6.25)

ug(t) = KT
z (t)zm(t)−KT

m(t)xm(t− τ) + Kymym(t). (6.26)

Adaptation algorithms

K̇(t) = γke(t)ωf

K̇m(t) = γme(t)xm(t− τ)

K̇ym(t) = γme(t)ym(t)

K̇z(t) = γze(t)zm(t). (6.27)

where γk = γm = γz = 9. Simulation results are shown in Figures 4 – 6. where we show the

time responses of the tracking error e, the control u, the output of plant y, the output of

the reference model ym, and the adaptive control parameters K and Km, Kz for a square

wave reference command.
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Figure 4: The time history of the plant and reference model outputs and the error and

control signals, respectively.

7 Conclusion

In this paper, by using adaptively adjusted prefilters from the state reference model, we

have presented a new approach to the design of output adaptive controllers for a class of

uncertain time-delay systems to track dynamic inputs generated from a reference model.

The main idea is the introduction in the control law of a feedforward component which

compensates the delayed states, in addition to output feedback. The feedforward is formed

by special adaptively adjusted prefilters as a function of the delayed state of the reference

model. Such a controller structure containing adaptive output feedback and adaptive

prefilters from the delayed reference model makes it possible to solve the problem of

adaptive exact asymptotic output tracking under parametric uncertainties. A simple

example is given to show the potential of the proposed techniques. The extension of a

proposed approach to the design of model reference adaptive output feedback controller for

systems of arbitrary relative degree is a current research topic.
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